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Abstract 

 

During the current COVID-19 pandemic, there have been many efforts to forecast the 

infection cases, deaths and medical or economic indicators, with a variety of statistical or 

epidemiological models. Some of the forecasting projects have influenced the policies in 

some countries. However, the prediction of future is uncertain by nature, given the 

fundamental nature of the COVID-19 pandemic as a “wicked problem”. The uncertainty is 

rooted in the many unknown unknowns about the contagious virus itself and the complex, 

heterogenous and dynamic human behaviours, government interventions and testing 

scenarios. The extreme uncertainty of this context makes the intent for prediction accuracy 

misleading. Herein, we do not aim to make “accurate” predictions about the future or to 

evaluate how accurate a prediction or a prediction model is. Instead, to address the 

uncertainty in dynamic real-world scenarios for which we do not have complete information 

and understanding, we explore the potentials of “predictive monitoring” with the aim to 

capture and make sense of the changes in theoretical predictions for meaningful signals of 

the uncertainty and changes in the real-world scenarios. Such signals from predictive 

monitoring are expected to make the planning, behaviours and mentality at the present 

time be more “future-informed” and possibly initiate and guide pre-cautionary actions now 

to shape the real future. 

 

Introduction 

 

Since the outbreak of COVID-19 in January 2020, researchers around the world have 

adopted classic or latest data science and AI techniques and applied them to the data 

available to predict the developments and trends of COVID-19 in different countries or 

regions. The noticeable efforts include the publicly available and continually updated 

forecasts by the Institute of Health Metrics and Evaluation (IHME) at University of 

Washington [1] and the MRC Centre for Global Infectious Disease Analysis at the Imperial 

College London [2], among others. Table 1 presents a list of publicly accessible COVID-19 

forecasting efforts around the world using a variety of statistical or epidemic process 

models. Some forecasts focus on future deaths and hospitality needs [3,4,5] and infection 

cases and peaks [6,7,8], while others focus on the impact of social distancing, travel 

restrictions, and mitigation and suppression strategies [7,11,12]. 
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Table 1. Public COVID-19 forecasting initiatives around the world, as of May 11, 2020 

Organization URL Methods 

Imperial College London https://www.imperial.ac.uk/mrc-global-

infectious-disease-analysis/covid-19/ 

Mechanistic transmission 

models 

University of Geneva, ETH 

Zürich & EPFL 

https://renkulab.shinyapps.io/COVID-19-

Epidemic-Forecasting/ 

Statistical models 

Massachusetts Institute of 

Technology 

https://www.covidanalytics.io/projections Modified SEIR model 

Los Alamos National 

Laboratories 

https://covid-19.bsvgateway.org/ Statistical dynamical 

growth model 

The University of Washington, 

Seattle 

https://covid19.healthdata.org/projections Statistical model 

The University of Texas, 

Austin 

https://covid-

19.tacc.utexas.edu/projections/ 

Statistical model 

Northeastern University  https://covid19.gleamproject.org/ Spatial epidemic model 

University of California, Los 

Angeles 

https://covid19.uclaml.org/ Modified SEIR model 

 

Some published studies have attempted to validate the accuracy of specific prediction 

methods [3,4,5,6], some of which used COVID-19 data from China. However, even the most 

cited forecasting method from the IHME has been found with model design issues [5,13] 

and that for 70 percent of time the actual death numbers fell outside its next-day 

predictions’ 95 percent confidence interval [14]. The IHME team later revised the model [4] 

but the prediction errors remain high. In any case, researchers are learning and improving 

the methods and tools on the go in order to make more and more accurate predictions on 

the next developments of the COVID-19 pandemic [13]. Despite the intrinsic uncertaint 

nature of COVID-19 predictions, some efforts have already influenced policies or informed 

policy makers to some extents and in certain ways [14][15]. 

 

Given the value of predictions but also the difficulty to do it well under extreme uncertainty 

and for such a wicked problem as the COVID-10 pandemic, we aim to explore the values and 

potentials of predictive monitoring to deal with the uncertainty of predictions and make use 

and make sense of prediction excises for only suitable goods. Predictive monitoring means 

the continual monitoring of the predictions of crucial future events, such as the bending and 

ending of the pandemic life cycle curve, together with the actual history data to date. In 

predictive monitoring, the fundamental assumption is that real-world scenarios are 

changing, so predictions are expected to change over time. Changes in predictions are not 

viewed as errors or inaccuracy, but valuable signals about the changes in the present real-

world scenarios.  

 

Therefore, predictive monitoring differs fundamentally from the traditional and common 

prediction or forecasting practices (some examples in Table 1) that attempt to make a 
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prediction now that can be accurate about the real future. Such prediction practices might 

be more reasonable when the context is less uncertain. Such predictions subconsciously 

take the future as fixed, while we assume future is not fixed, a result of the happenings, 

changes and interventions from now to them, and uncertain. The traditional COVID-19 

prediction practices are more like weather forecasts where the future weather is extrinsic to 

us and cannot be changed by us. However, the evolution of the pandemic is also affected by 

the evolving human behaviours and government interventions, etc. In addition, predictive 

monitoring also differs from the common monitoring practice that reports actual past cases 

of infection, recovery and death, which may stimulate reactive and responsive actions. By 

contrast, predictive monitoring may inform, initiate and guide more future-informed 

planning, policies and actions to shape the real future. Table 2 presents a taxonomy that 

explicates the differences of predictive monitoring from traditional prediction and 

monitoring. 

 

Table 2. The taxonomy for predictive monitoring, traditional prediction, and monitoring 

 

  What Value Does It Deliver? 

  Future-Informed Past-Informed 

When Is 

It 

Suitable? 

High Environment 

Uncertainty 

Predictive  

Monitoring 
Monitoring 

Low Environment 

Uncertainty 
Prediction  

 

 

The Predictive Monitoring Experiment 

 

- Theory 

 

We experimented predictive monitoring in the realistic context of the on-going COVID-19, in 

order to explore its potentials and develop specific guidelines and strategies for the right 

use of it. To run the experiment, the first is to choose a prediction model and data source, 

before we can update and monitor the predictions with daily new data coming in over time. 

The propagation of infectious diseases often follows a life cycle pattern, from the outbreak 

to the acceleration phase, inflection point, deacceleration phase and eventual ending. Such 

a life cycle is the result of the infection process, property of the virus, the nature of a 

population and the adaptive and countering behaviours of agents including individuals 

(avoiding physical contact) and governments (locking down cities) in the population. 
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However, the pandemic life cycles vary by countries (or regional populations), and different 

countries might be in different phases of the life cycles at a same point in time.  

 

For instance, on April 21, in Singapore, Prime Minister Hsien-Loong Lee announced the 

extension of circuit breaker to June 1 in response to the spikes of COVID-19 cases in 

Singapore, on the same day when Prime Minister Giuseppe Conte announced Italy’s plan to 

reopen businesses in Italy from May 4. Ideally speaking, such decisions and planning can be 

rationalized by well knowing where our own country (together with other countries and the 

world as a whole) is in its own pandemic life cycle, when the turning point is coming if it has 

yet come, and when the pandemic will end. Adjustments may be made according to the 

changes in the estimations and predictions on these fronts. The basis for such actionable 

estimation is the pandemic’s overall life cycle. 

 

- Model 

 

The pandemic life cycle pattern is expected to appear as a S-shape curve when one plots the 

accumulative count of infection cases over time or equivalently as a “bell-shape” curve of 

the daily counts over time (see examples in Figure 1). Note that the bell here is not expected 

to be symmetrical with no expectation of a normal distribution, but a long tail to the right. 

Such patterns as well as the underlying dynamics have been well studied in various domains 

including population growth, diffusion of new technologies in the society and infectious 

diseases, and have theoretically established mathematical models, such as the logistic 

model that describes a general life cycle phenomenon and the SIR (susceptible-infected-

recovered) model [17,18,19] that describes the dynamic epidemic process of the spread of 

infectious diseases.  
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Figure 1. Continuous Data-Driven Estimations of COVID-19 Life Cycle, Turning and Ending Dates for 

Singapore and Italy as of April 21 versus April 28, 2020 

 

The SIR model is employed in this experiment for a few reasons. One, it is context-specific 

and models the dynamic process of inflections in a population over time. Second, it requires 

simple data inputs that are publicly available. Third, there are open source computer codes 

available for quick adoption. Here we will not repeat the details of the SIR model in this 

paper, which can be easily found in many mathematics textbooks. Essentially, the SIR model 

use three ordinary differential equations to describe the dynamic flows of people between 

three compartments: S for the number of susceptible people, I for the number of infectious 

people, and R for the number of removed people (either recovered, died or immured) in the 

population. The SIR model incorporates two main parameters, beta and gamma. Gamma is 

the number of days one is contagious and a property of the virus. Beta is the average 

number of people infected by a previously infected person and is related to not only the 

interaction patterns of people in the society (which social distancing can influence) but also 

the infection process property of the virus [17,18,19]. 

 

- Implementation 

 

The values of these two parameters determine the shape of an infectious disease’s specific 

life cycle curve for a population. In particular, the model, which a system of three 

differential equations for S, I and R in its original form, can be reduced to one function about 

the total infection count, or equivalently the daily new infection counts. This key variable is 

the sum of I and R and has publicly available data reported by official channels every day. 

Please refer to the paper [20] by Milan Batista for the model reduction. Therefore, only the 

data of the accumulative infection cases over time (which can be also used to derive the 

daily new cases) is required to regress the key parameters and other constants and thus 

train a model to derive the overall pandemic life cycle curve.  
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Batista also developed open-source computer codes to implement the regression using the 

reduced function [21]. In our experiments, we applied the codes of Batisa to the COVID-19 

accumulative infection data for each country from “Our World in Data” [22] to regress the 

parameters and constants of the basic SIR model. Note that, more sophisticated derivative 

versions of the SIR model with more compartments, such as the SEIR model, have also been 

used in COVID-19 forecasting (such as [6] and several listed in Table 1), but additional 

increased equations and parameters also require more sophisticated data inputs which we 

do not have. Regressions are run for individual countries and updated daily with the newest 

accumulative and daily infection count data becoming available daily. Not the data for all 

countries can produce statistically meaningful regression results. Only the countries with 

satisfactory goodness-of-fit between model and data as measured by R^2 greater than 0.8 

are accepted, analysed and reported. For these countries, the regressed model for each of 

them is used to estimate the full pandemic life cycle and plot the life cycle curve.  

 

Makes Sense of Prediction Changes 

 

As shown in the examples in Figure 1, the initial segment of the curve is fitted with the data 

to date and the remaining segment of the curve is “predicted”. With the estimated full life 

cycle curve, one can easily observe which phase of the pandemic life cycle a specific country 

is in (with actual data plotted together), when the inflection point (the peak in the bell-

shape curve) is coming (for the interests of the countries still in the accelerating phase), and 

when the pandemic will end (for the interests of all countries). Therefore, our predictive 

monitoring is focused on such high-level transitioning characteristics of the pandemic’s total 

life cycle [7], instead of the specific numbers of accumulative or daily cases on a specific day, 

which the traditional forecasting efforts ([3,4,5] and others in Table 1) try to forecast with 

confidence. 

 

The inflection point of the pandemic life cycle curve is specific and appears as the peak in 

the bell-shape curve. However, estimating the “ending date” is not straight-forward and 

may be done differently for different considerations. Most theoretically, one can define the 

pandemic’s end date as the day with the last infection case of the pandemic, and thus 

operationalize the estimation of the end date as the day with the last predicted infection at 

the right most end of the estimated pandemic life cycle curve. However, practically, 

estimation of the theoretical ending might not be useful to provide guidance for the 

planning of activities of governments, companies and individuals. One might consider an 

early date when predominately most predicted infections have been actualized and only a 

small portion of the total predicted epidemic population is left (e.g., the case of Australia as 

of now). The total predicted epidemic population size is the area under the entire curve. In 

our experiments, we monitored three alternative estimates of end dates in the order of 

conservativeness. 

- The date to reach the last expected case; 
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- The date to reach 99% of the total expected cases; 

- The date to reach 97% of the total expected cases. 

In any case, specifying an end date is arbitrary in nature. For flexibility, one may simply 

exploit the estimated life cycle curve, especially its right most tail segment, to screen and 

sense when the pandemic gradually vanishes to which extent.  

 

It is noteworthy that the bell-shape curve (of daily cases, instead of the S-shape of 

accumulative cases) is chosen to visualize the life cycle because it allows easy detection of 

the inflection point as the peak of the curve to distinguish countries in acceleration and 

deacceleration phases. For instance, Figure 1A visually reveals on April 21 Singapore was still 

in its acceleration phase, whereas Figure 1C shows Italy has passed its inflection point. At 

the time, the estimated “future” turning date (i.e., the inflection point of the curve) for 

Singapore would be May 1. However, as shown in Figure 1B, on April 28, Singapore has 

already past its inflection point based on the updated curve with newer data from April 21 

to 28, earlier than the turning date predicted on 21 April (in Figure 1A). In contrast, from 

April 21 (Figure 1C) to April 28 (Figure 1D), the curves of Italy are slightly lifted, and the later 

predictions for Italy suggest consistently later 97%, 99% and 100% ending dates. 

 

These changes are discovered through predictive monitoring of the actual developments 

and estimations together holistically. We continually monitor the predictions, not really 

hoping the previous predictions to be tested true or accurate later when the real “future” 

comes, but for detecting in the changes of the predictions over time. From a traditional 

perspective, the difference between a future prediction and a previous one on the same 

variable would be considered a bad thing and a proof of failure of the prediction model 

[13,14]. Instead, here we tend to make sense of such changes from the earlier to later 

predictions for meaningful signals as to what are happening in the dynamically changing 

real-world scenarios, based on the fundamental understanding that predictions made over 

time should be different when the real-world scenarios are changing. 

 

For example, the changed predictions of the theoretical pandemic end dates of Singapore 

over time may reveal the effects of the recently strengthened measures of the Singapore 

government and more cautions of the local citizen from PM Lee’s announcement of circuit 

breaker extension on 21 April. The changed predictions of pandemic end dates for Italy may 

result from the slightly relaxed government control measures and human behaviours in Italy 

in the past week. The pandemic curves of Singapore and Italy have shifted over time, as the 

real-world scenarios have dynamically changed. It would be wrong to expect the curve 

estimated with data from the previous scenario to represent the curve for a later scenario. 

Instead, the curves should be continually re-estimated with the latest data, the predictions 

based on these curves should be continually monitored, and the changes in the predictions 

may reveal changes in real-world scenarios over time. Monitoring and detecting such 

changes in the predictions provides the main value of predictive monitoring.  
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In other words, our default expectation in predictive monitoring is that predictions will 

change, especially when the real-world scenarios, such as government policies, testing 

protocols and human behaviours, are also rapidly changing. In such cases, we should not 

expect the model trained with data as of today to be true for a different scenario later. 

When considering the dynamics of human behaviours and government policies and other 

real-world scenarios that the mathematical model and training data cannot accurate 

represent, predictive monitoring would be a more valuable exercise, rather than making a 

prediction now to see if it is a hit or miss in future.  

 

The changes in the predicted theoretical events, such as the theoretical ending dates, may 

also allow us to sense or measure the uncertainty rooted from the real-world scenarios on 

the ground. Therefore, we also report the standard deviations in N latest and connectively 

predicted theoretical end dates as an indicator of uncertainty. Such a measure is often 

called “volatility” in finance when used to evaluate the uncertainty associated with stock 

prices. If the standard deviation of the connective predicted ending dates is small 

(regardless of their accuracy), it indicates the real-world scenarios are not changing. If it is 

high, it might imply changes are happening in the real-world scenarios. Figure 2 reports the 

past 5-day volatilities of the estimates of the theoretical ending dates of some major 

countries with model-data (of daily new cases) fits R^2 > 0.8.  

  
Figure 2. Prediction Volatility against Length of Time to Predicted Ending Dates 

 

Some findings in Figure 2 are noteworthy. There appears a general correlation between the 

ending and volatility across countries, and also exist outliers, such as Singapore with a 

relatively close ending date but extremely high volatility, indicting uncertainty on the 

ground recently, which might be related to the testing protocols because the cases in 

Singapore are contained in the dormitories of foreign workers. Also, Brazil stands out with a 
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very far ending date and high volatility, indicating an undesirable and uncertain real-world 

scenario on the ground in Brazil now and demand caution and pre-cautionary actions. USA 

has a quite long time to its theoretical ending but appears quite stable in predictions. 

Switzerland presents a desirable case with the closest ending date and also low volatility. 

 

By contrast, we purposefully avoid such metrics as “margin of errors” and “confidence 

intervals”, because our assumption is the pandemic’s real-world scenarios are uncertain and 

evolving by nature and thus there is no target value to define an “error”. In contrast, the 

confidence intervals have been called quantified uncertainty bands in some of the COVID-19 

forecasts [3,5]. Such calling might be theoretically questionable. In complexity science, 

uncertainty is defined as unknown unknown and not quantifiable. It is the case of the 

COVID-19. Only the known unknown, which is often called” risk”, is quantifiable. Most of the 

forecasting uncertainty measures are in fact risk measures. However, it is also a question 

whether risk measurement is meaningful in the uncertain case of COVID-19. Risk 

measurement is suitable when there is a fixed target, but it is just that we are unsure to 

what extent we can hit the target.  

 

In sum, the foregoing examples and elaboration are aimed to explicate the importance of 

predictive monitoring or continually monitoring predictions to address uncertainty, detect 

and evaluate changes (such as human behavers and government control measures) made in 

the dynamic real-world scenarios in real time. It also allows the estimation of the volatility 

of the predictions as an indicator of the uncertainty of the underlying real-world scenarios. 

Thus, predictive monitoring differs from making a one-shot prediction for it to become true 

in the future and differs from the monitoring of actual cases every day (see Table 2 again).  

 

Broader Discussion 

 

Predictive monitoring for each country should be read and interpreted together with what 

are happening in the real world and government policy changes. For instance, Singapore 

government’s strengthened restrictions in April may have bended its curve earlier than the 

previously predicted ones, and the early relaxation of social distancing and lockdown in Italy 

and Germany might increase infection rates and thus delay the pandemic ending as 

predicted now. Also, the predictive monitoring of a country should not be read in isolation, 

but together with the predictions and real time situations of other countries. No country is 

in isolation in the world today. The monitoring and control of one country must be coupled 

with the monitoring and control of other countries.  

 

For example, while the predictive monitoring shows the pandemic has “theoretically” ended 

in China, South Korea and Australia (despite a small number of domestic cases reported 

daily), it also shows many other countries (such as Brazil, USA) and the world as a whole will 

still suffer till the end of 2020 if we remain in our present trajectories of government 
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policies and individual behaviours and without medical cures and vaccines for COVID-19. 

Therefore, the governments of China, South Korea and Australia may not want to open their 

international ports so soon and lift the domestic restrictions so quickly, until the pandemic 

nears its end in the world as whole. Although it is the time for all of us to isolate and 

distance physically from each other, it is also the time that needs more sharing of data, 

information and knowledge and more close coordination. 

 

For countries that are still early in their own pandemic life cycles (such as Brazil still in the 

acceleration phase as of May 8 based on our predictive monitoring), the prediction of the 

rest of the curve, inflection point and ending dates will be more teasing, but also inherent 

less relevant to the “real future” to come given that the actual data only cover a smaller and 

early portion of the total life cycle and many real-world scenarios that the model cannot 

describe are expected to change. By contrast, for countries that have passed their inflection 

points and been approaching ending phases, prediction is less useful. When uncertainty is 

low, it is more likely that we can derive and approve a highly predictive model. However, in 

such cases, the trained model is more about explaining the history and less about predicting 

the future. For those countries, uncertainty still exists, for example, a new epidemic wave 

might come if the governments and individuals lift controls and disciplines too early, 

especially when the pandemic is still prevalent in other countries. 

 

Summary 

 

Predictive monitoring may completement the traditional historical case monitoring practice 

and the traditional accuracy-oriented prediction practices to deliver complementary values. 

The value of continuous predictive monitoring might be greater when the real-world 

scenarios that the models cannot describe are inherently dynamic and more uncertain. We 

will continually monitor the estimated pandemic life cycle curves and end dates and explore 

valuable insights from the monitored prediction changes, as an experiment to explore the 

potentials of as well as develop guidelines and strategies for valuable predictive monitoring 

practices.  

 

In the meantime, readers must take any prediction, regardless of the model and data, with 

caution. Over-optimism based on some predicted end dates is dangerous because it may 

loosen our disciplines and controls and cause the turnaround of the virus and infection. 

Although prediction based on science and data is aimed to be objective, it is uncertain by 

nature. One thing that is certain is that the model, data and prediction are inaccurate and 

insufficient to fully represent the complex, evolving, and heterogeneous realities of our 

world. The model we use in the experiment is only theoretically suitable for one stage or 

wave of the epidemic evolution, and relatively more meaningful when applied to data for 

each single stage if the country has experienced multiple stages (such as Singapore). The 

prediction is also conditioned by the quality of the data. The data publicly available today is 
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based on tests, which are done differently in different countries and over time periods. They 

do not necessarily represent the total infection account which is the theoretical input of the 

model. One should expect changes in the continually monitored predictions, instead of fixed 

expectations.  

 

Future is always uncertain. We must keep this in mind when doing and reading any 

prediction. No one predicted the COVID-19 outbreak beforehand. With acknowledging the 

uncertain nature of the ongoing COVID-19 pandemic and our growing inter-connected and 

complex world, what are eventually and fundamentally needed are the flexibility, 

robustness and resilience of people, organizations and governments, as well as sharing and 

coordination, to deal with unpredictable and unwanted future events. 
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